

RED DE SEGUIMIENTO DE MASAS DE AGUA MUY MODIFICADAS DEMARCACIÓN HIDROGRÁFICA DEL EBRO

INFORME FINAL DEL EMBALSE DE LECHAGO

ÁREA DE CALIDAD DE AGUAS CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

RED DE SEGUIMIENTO DE MASAS DE AGUA MUY MODIFICADAS

DEMARCACIÓN HIDROGRÁFICA DEL EBRO

PROMOTOR:

CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

SERVICIO:

CONTROL DEL ESTADO ECOLÓGICO

DIRECCIÓN DEL PROYECTO:

Concha Durán Lalaguna y María José Rodríguez Pérez

EMPRESA CONSULTORA:

Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia Estudi General

EQUIPO DE TRABAJO:

Área de Limnología, dirigida por Dr. Eduardo Vicente Pedrós, Catedrático de Ecología. Director del Estudio.

PRESUPUESTO DE LA ADJUDICACIÓN:

70.590,38 €

CONTENIDO:

INFORME INDIVIDUAL DEL EMBALSE DE LECHAGO

AÑO DE EJECUCIÓN:

2015

FECHA ENTREGA:

DICIEMBRE 2015

REFERENCIA IMÁGENES PORTADA:

Vista del embalse de Lechago desde el punto de toma de muestras.

CITA DEL DOCUMENTO: Confederación Hidrográfica del Ebro (2015). Red de seguimiento de masas de agua muy modificadas en la Demarcación Hidrográfica del Ebro. 208 págs. más anejos. Disponible en PDF en la web: http://www.chebro.es

El presente informe pertenece al Dominio Público en cuanto a los Derechos Patrimoniales recogidos por el Convenio de Berna. Sin embargo, se reconocen los Derechos de los Autores y de la Confederación Hidrográfica del Ebro a preservar la integridad del mismo, las alteraciones o la realización de derivados sin la preceptiva autorización administrativa con fines comerciales, o la cita de la fuente original en cuanto a la infracción por plagio o colusión. A los efectos prevenidos, las autorizaciones para uso no científico del contenido deberán solicitarse a la Confederación Hidrográfica del Ebro.

ÍNDICE

			Página
1.	INTR	RODUCCIÓN	7
2.	DES	CRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE	7
	2.1.	Ámbito geográfico y geológico	7
	2.2.	Características morfométricas e hidrológicas	8
	2.3.	Usos del agua	8
	2.4.	Registro de zonas protegidas	8
3.	TRA	BAJOS REALIZADOS	9
4.	DIAC	SNÓSTICO DE LA SITUACIÓN ACTUAL	10
	4.1.	Características fisicoquímicas de las aguas	10
	4.2.	Hidroquímica del embalse	13
	4.3.	Fitoplancton y concentración de clorofila	14
	4.4.	Zooplancton	17
5.	DIAC	SNÓSTICO DEL GRADO TRÓFICO	19
6.	DIAC	GNÓSTICO DEL POTENCIAL ECOLÓGICO	20
		,	

ANEXO I. REPORTAJE FOTOGRÁFICO

ÍNDICE DE FIGURAS Y TABLAS

ÍNDICE DE FIGURAS CORRESPONDIENTES A GRÁFICOS Y FOTOS

Figura 1. Localización de la estación de muestreo en el embalse	9
Figura 2. Perfil vertical de la temperatura y pH	10
Figura 3. Perfil vertical de la extinción luminosa y oxígeno disuelto	11
Figura 4. Perfil vertical de la conductividad	12
Figura 5. Perfil vertical de la clorofila a	15
Figura 6. Fotografía de la presa del embalse	26
Figura 7. Fotografía de la cola del embalse	26
ÍNDICE DE TABLAS	
Tabla 1. Características morfométricas del embalse de Lechago	8
Tabla 2. Estructura y composición de la comunidad de fitoplancton	14
Tabla 3. Composición detallada de la comunidad de fitoplancton	15
Tabla 4. Estructura y composición de la comunidad de zooplancton	17
Tabla 5. Composición detallada de la comunidad de zooplancton	18
Tabla 4. Parámetros indicadores y rangos de estado trófico.	19
Tabla 5. Diagnóstico del estado trófico del embalse de Lechago.	19
Tabla 6. Parámetros y rangos para la determinación del potencial ecológico experimental.	20
Tabla 7. Combinación de los indicadores.	21
Tabla 8. Diagnóstico del potencial ecológico del embalse de Lechago.	21
Tabla 9. Valores de referencia propios del tipo (VR _t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015)	22
Tabla 10. Parámetros, rangos del RECT y valores para la determinación del potencial ecológico normativo.	23
Tabla 11. Combinación de los indicadores.	23
Tabla 12. Diagnóstico del potencial ecológico (PEnorm) del embalse de Lechago	24

1. INTRODUCCIÓN

El presente documento recoge los resultados de los trabajos realizados en el embalse de Lechago durante la campaña de muestreo del verano de 2015 y la interpretación de los mismos, a efectos de proporcionar una referencia que facilite la consulta y explotación de la información obtenida.

En general, se recurre a presentaciones gráficas y sintéticas de la información, acompañadas de un texto conciso, lo que permitirá una consulta ágil y rápida del documento.

En el **Anexo 1** se presenta un reportaje fotográfico que refleja el estado del embalse durante el periodo estudiado (verano de 2015, correspondiente al año hidrológico 2014-2015).

En los apartados sucesivos se tratan los siguientes aspectos:

- Resultados del estudio en el embalse (FASE DE CARACTERIZACIÓN) de todos los aspectos tratados (hidrológicos, fisicoquímicos y biológicos), que culminan en el diagnóstico del grado trófico.
- Clasificación del "Potencial Ecológico", tras la aplicación de los indicadores biológicos y fisicoquímicos propuestos en la Directiva Marco del Agua.

2. DESCRIPCIÓN GENERAL DEL EMBALSE Y DE LA CUENCA VERTIENTE

2.1. Ámbito geográfico y geológico

El embalse de Lechago está situado en el extremo oriental de la cuenca de Almazán, sobre materiales del basamento paleozoico y mesozoico en la rama Aragonesa de la Cordillera Ibérica.

El embalse de Lechago se sitúa en el término municipal de Calamocha, en la provincia de Teruel. Regula las aguas del río Pancrudo.

2.2. Características morfométricas e hidrológicas

Se trata de un embalse de reciente construcción, de unas 210 ha de superficie y de geometría regular y alargada. La cuenca de drenaje del embalse de Lechago tiene una superficie de 2957 km². El embalse tiene una capacidad total de 18,16 hm³ En la tabla 1 se presentan las características morfométricas del embalse.

Tabla 1. Características morfométricas del embalse de Lechago.

Superficie de la cuenca	2957 km²
Capacidad total N.M.N.	18,16 hm ³
Capacidad útil	18 hm³
Superficie inundada	210 ha
Cota máximo embalse normal	891 msnm

Tipo de clasificación: 7. Monomíctico, calcáreo, de zona húmeda, perteneciente a ríos de cabecera y tramo alto, con temperatura media anual menor de 15 °C.

Se trata de un embalse monomíctico, de geología calcárea y situado en zona no húmeda. En el verano de 2015 existe termoclina y se sitúa entre los 4 y los 9 metros de profundidad. El límite inferior de la capa fótica se sitúa alrededor de los 10,5 metros de profundidad determinado mediante medidor fotoeléctrico, muy inferior a la estimación mediante el disco de Secchi, que estima que la luz llega hasta el fondo.

El tiempo de residencia hidráulica media en el embalse de Lechago para el año hidrológico 2014-2015 no pudo ser calculado debido a la ausencia de datos de salidas de caudal en la web de la CHE.

2.3. Usos del agua

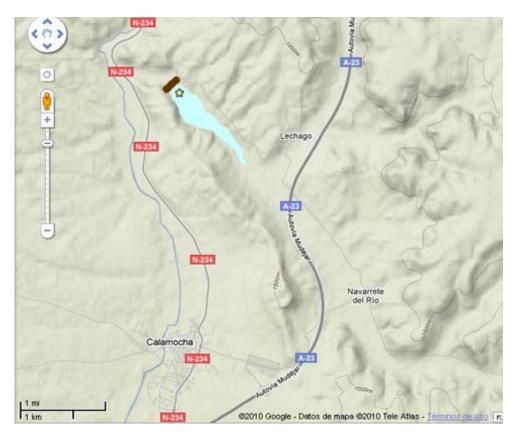
Las aguas del embalse se destinan a abastecimiento humano y a paliar el déficit hídrico de los riegos del bajo Jiloca. También contribuye al mantenimiento de los caudales ecológicos mínimos del río Jiloca, permitiendo el desarrollo de usos recreativos y turísticos.

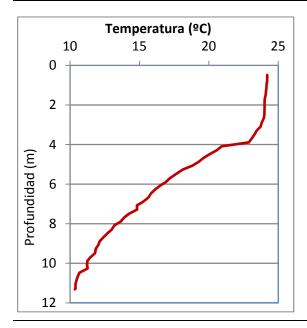
2.4. Registro de zonas protegidas

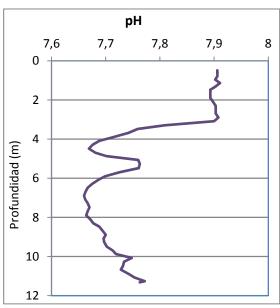
El embalse de Lechago forma parte del Registro de Zonas Protegidas elaborado por la Confederación Hidrográfica del Ebro, en contestación al artículo 6 de la Directiva Marco del Agua, en la categoría de zonas de extracción de agua para consumo humano.

3. TRABAJOS REALIZADOS

Para acometer la caracterización del embalse se ha ubicado una estación de muestreo en las inmediaciones de la presa (ver figura 1). Se ha completado una campaña de muestreo el 8 de Julio de 2015, en la que se midieron *in situ* los parámetros fisicoquímicos y la transparencia en la columna de agua, se tomó una muestra de agua integrada y otras puntuales para los análisis químicos y se realizaron muestreos de fitoplancton y zooplancton.

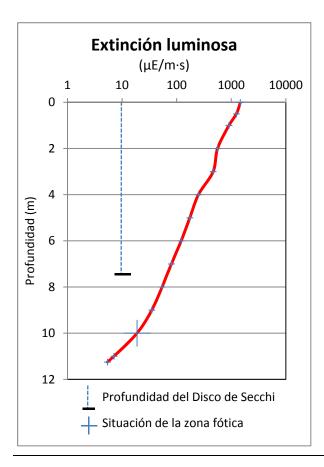



Figura 1. Localización de la estación de muestreo en el embalse

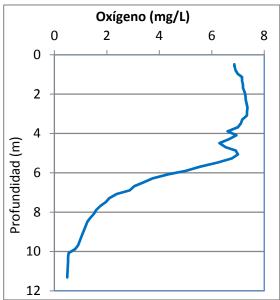

4. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

4.1. Características fisicoquímicas de las aguas

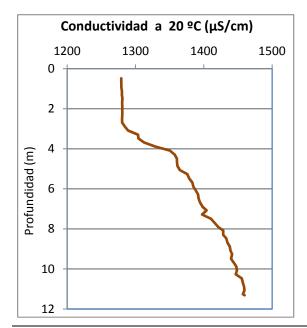
De los resultados obtenidos se desprenden las siguientes apreciaciones:


La temperatura del agua oscila entre los 10,35 °C en el fondo, y los 24,21 °C - máximo registrado en superficie-. En el momento del muestreo (17 Junio 2015) no hay termoclina.

El pH del agua en superficie es de 7,91, máximo epilimnético. En el fondo el pH es 7,77. El mínimo estival se encuentra a los 7 m de profundidad, con un pH de 7,66.


Figura 2. Perfil vertical de la temperatura y pH.

La transparencia del agua registrada en la lectura de disco de Secchi (DS) es de 7,40 m, lo que supone una profundidad de la capa fótica que llegaría hasta el fondo, muy similar a la profundidad obtenida con el medidor fotoeléctrico, que es de 10,5 m.


La turbidez media de la zona eufótica (muestra integrada a 9 m de profundidad) fue de 2,52 UAF.

Las condiciones de oxigenación de la columna de agua alcanzan una concentración media de 4,24 mg/L. Se han detectado condiciones anóxicas (<2 mg O_2/L) a partir de los 7,5 metros de profundidad.

Figura 3. Perfil vertical de la extinción luminosa y oxígeno disuelto.

La conductividad del agua es de 1279 μ S/cm en la superficie (valor mínimo) y de 1457 μ S/cm en el fondo, el valor máximo del perfil.

Figura 4. Perfil vertical de la conductividad.

4.2. Hidroquímica del embalse

De los resultados analíticos obtenidos en la campaña de 2015 en la muestra integrada, se desprenden las siguientes apreciaciones:

- La concentración de fósforo total (PT) en la muestra integrada (zona fótica) fue de 23,64 μg P/L.
- La concentración de P soluble fue de 2,10 μg P/L.
- La concentración de nitrógeno total (NT) fue de 1,03 mg N/L.
- La concentración de nitrógeno inorgánico oxidado (nitrato + nitrito, NIO) tomó un valor de 0,72 mg N/L.
- La concentración de amonio (NH₄) resultó de 0,094 mg N/L).
- La concentración de sílice tomó un valor de 16,24 mg SiO₂/L
- La alcalinidad en este embalse (zona fótica) fue de 3,88 meq/L.

4.3. Fitoplancton y concentración de clorofila

En el análisis de fitoplancton de las muestras del embalse de Lechago se han identificado un total de 13 especies, distribuidas en los siguientes grupos taxonómicos:

BACILLARIOPHYCEAE	2
CHLOROPHYCEAE	5
CRYPTOPHYCEAE	4
EUGLENOPHYCEAE	2

La estructura de la comunidad de fitoplancton se resume en la tabla 2 y la composición detallada en la tabla 3.

Tabla 2. Estructura y composición de la comunidad de fitoplancton.

PARÁMETRO UNIDAD Nº CÉLULAS TOTALES nº cél./ml BIOVOLUMEN TOTAL μm³/ml		VALOR	
		1535	
		461819	
Diversidad Shannon-	Wiener	1,56	
CLASE PREDOMINANTE (DENSIDAD)	Cryptophyceae	
Nº células/ml		1535	
EODEOIE DDEDOMINANTE	(DENOID A D)	Plagioselmis nannoplanctica (=Rhodomonas	
ESPECIE PREDOMINANTE	(DENSIDAD)	lacustris var. nannoplanctica)*	
Nº células/ml		1098	
CLASE PREDOMINANTE (B	OVOLUMEN)	Cryptophyceae	
μm³/ml		446756	
ESPECIE PREDOMINANTE (BIOVOLUMEN)		Cryptomonas erosa var. reflexa	
μm³/ml		322911	

^{*} Nota: Entre paréntesis se cita el anterior nombre de la especie.

La concentración de clorofila fue de 3,24 µg/L en la muestra integrada, cuya profundidad se ha señalado con una línea roja en la figura 6.

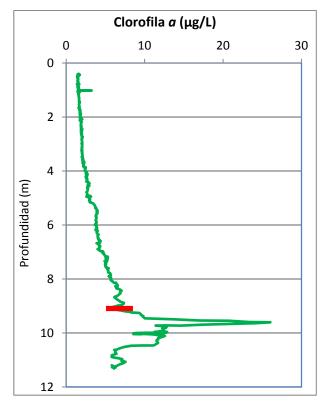


Figura 5. Perfil vertical de la clorofila a

La composición de la población fitoplanctónica de la muestra integrada de la zona fótica indicando su abundancia y biovolumen, y la densidad cualitativa de la muestra integrada de fitoplancton del muestreo vertical con red de plancton, muestran los resultados de la tabla 3:

Tabla 3. Composición detallada de la comunidad de fitoplancton

COD EMB LW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EIVIB_LVV	FITOPLANCTON	cél./ml	µm3/ml	(1 al 5)
	BACILLARIOPHYCEAE /PENNALES/			
CYMBMINU0	Cymbella minuta			1
GYROACUM0	Gyrosigma acuminatum			1
NAVICRYH0	Navicula cryptocephala			1
NITZACIC0	Nitzschia acicularis			1
NITZPALE0	Nitzschia palea	1	466	1
FRAGULNA0	Ulnaria ulna (=Fragilaria ulna)	1	1.753	1
	CHLOROPHYTA			
CHORCHOD0	Choricystis chodatii	46	1.501	
DIDYCOMA0	Didymocystis comasii			1
DIDYFINA0	Didymocystis fina	2	25	
ELAKGELA0	Elakatothrix gelatinosa			1
OOCYBORG0	Oocystis borgei			2
OOCYLACU0	Oocystis lacustris			1

COD EMP IW	COMPOSICIÓN	ABUNDANCIA	BIOVOLUMEN	CUALITATIVO
COD_EMB_LW	FITOPLANCTON	cél./ml	µm3/ml	(1 al 5)
OOCYMARS0 Oocystis marssonii		1	134	2
SPHAPLAN0	Sphaerocystis planctonica	28	5.090	5
TETRKOMA0	Tetrastrum komarekii	19	1.360	1
	CYANOBACTERIA			
PSEUDGEN0	Pseudanabaena sp.			1
	CRYPTOPHYCEAE			
CRYPEROS0	Cryptomonas erosa			1
CRYERREF2	Cryptomonas erosa var. reflexa	135	322.911	
CRYPMARS0	Cryptomonas marsonii	96	54.894	1
CRYPOVAT0	Cryptomonas ovata			1
PLAGLACU0	Plagioselmis (=Rhodomonas) lacustris	102	14.673	1
PLAGNANN0	Plagioselmis nannoplanctica (=Rhodomonas lacustris var. nannoplanctica)	1.098	54.278	1
	DINOPHYCEAE			
CERAHIRU0	Ceratium hirundinella			1
PERICINC0	Peridinium cinctum			1
	EUGLENOPHYCEAE			
EUGLAGIL0	Euglena agilis			1
EUGLOXYU0	Euglena oxyuris			1
EUGLEGEN0	Euglena sp.	5	3.482	1
LEPOOVUM0	Lepocinclis ovum	0,3	1.252	2
	TOTALES BACILLARIOPHYCEAE	2	2.219	
	TOTALES CHLOROPHYTA	96	8.110	
	TOTALES CRYPTOPHYCEAE	1.432	446.756	
	TOTALES EUGLENOPHYCEAE	5	4.734	
	TOTALES ALGAS	1.535	461.819	

Nota: Entre paréntesis se cita el anterior nombre de la especie.

Clases de	% de
abundancia	presencia
1	<9
2	10-24
3	25-60
4	61-99
5	>99

4.4. Zooplancton

En el análisis de zooplancton de las muestras del embalse de Lechago se han identificado un total de 9 especies, distribuidas en los siguientes grupos taxonómicos:

- 2 Cladocera
- 2 Copepoda
- 5 Rotifera

La estructura y composición de la comunidad de zooplancton se resume en la tabla 4.

Tabla 4. Estructura y composición de la comunidad de zooplancton.

PARÁMETRO	UNIDAD	VALOR		
PROFUNDIDAD	m		6,0	
DENSIDAD TOTAL	individuos/L	141,32		
BIOMASA TOTAL	μg/L		263,74	
Diversidad Shar	non-Wiener		2,29	
CLASE PREDOMINAL	NTE (DENSIDAD)		Rotíferos	
individu	os/L	59,86		
TAXÓN PREDOMINANTE (DENSIDAD)			Daphnia longispina	
individuos/L		51,73		
CLASE PREDOMINANTE (BIOMASA)			Cladóceros	
μg/L		196,77		
ESPECIE PREDOMINA	ANTE (BIOMASA)	Daphnia longispina		
μg/L		196,58		
COLUMNA AGUA INTEGRADA (red vertical)		0 - 11 m		
CLADÓCEROS: 22,51 %	COPÉPODOS: 38	88,96 % ROTÍFEROS : 38,53 %		

La composición detallada de la población zooplanctónica presente en la muestra cuantitativa de zooplancton indicando la densidad y biomasa, y el porcentaje de las especies presentes en la muestra integrada de la red vertical, se muestran en la tabla 5:

Tabla 5. Composición detallada de la comunidad de zooplancton

CÓDIGO	COMPOSICIÓN	ABUNDANCIA	BIOMASA	PORCENTAJE
TAXÓN	ZOOPLANCTON	Ind./L	mg/L	%
	CLADÓCEROS			
ALONAGEN0	Alona sp.	0,19	0,19	
DAPHLONG0	Daphnia longispina	51,73	196,58	22,51
	COPÉPODOS			
ACANAMER0	Acanthocyclops americanus	3,92	2,43	2,60
	Cyclops divergens			1,73
NEOLALLU0	Neolovenula alluaudi	25,61	52,63	21,65
CYCLOPFAM	Ciclópido			12,99
	ROTÍFEROS			
ASPLPRIO0	Asplanchna priodonta	4,69	3,52	1,73
HEXAOXYU0	Hexarthra oxyuris	35,00	7,28	20,35
KERAQUAD0	Keratella quadrata	1,08	0,13	
POLYDOLI0	Polyarthra dolichoptera	17,69	0,90	15,15
POLYVULG0	Polyarthra vulgaris			1,30
SYNCKITI0	Synchaeta kitina	1,40	0,07	
	Total Cladóceros	51,92	196,77	22,51
	Total Copépodos	29,53	55,06	38,96
	Total Rotíferos	59,86	11,91	38,53
	Total	141,32	263,74	100

5. DIAGNÓSTICO DEL GRADO TRÓFICO

Se han considerado los indicadores especificados en la tabla 6 para los valores medios en el embalse, estableciéndose el estado trófico global del embalse según la metodología descrita en la sección 5 de la MEMORIA DEL ESTUDIO.

Tabla 6. Parámetros indicadores y rangos de estado trófico.

Parámetros Estado Trófico	Ultraoligotrófico	Oligotrófico	Mesotrófico	Eutrófico	Hipereutrófico
Concentración P (μg P/L)	0-4	4-10	10-35	35-100	>100
Disco de Secchi (m)	>6	6-3	3-1,5	1,5-0,7	<0,7
Clorofila a (µg/L) epilimnion	0-1	1-2,5	2,5-8	8,0-25	>25
Densidad algal (cel./ml)	<100	100-1000	1000-10000	10000-100000	>100000
VALOR PROMEDIO FINAL	> 4,2	3,4 - 4,2	2,6 - 3,4	1,8 – 2,6	< 1,8

En la tabla 7 se incluye el estado trófico indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según la valoración de este estado trófico final.

Tabla 7. Diagnóstico del estado trófico del embalse de Lechago.

INDICADOR	VALOR	ESTADO TRÓFICO
P TOTAL	23,64	Mesotrófico
CLOROFILA a	3,24	Mesotrófico
DISCO SECCHI	7,35	Ultraoligotrófico
DENSIDAD ALGAL	1535	Mesotrófico
ESTADO TRÓFICO FINAL	3,5	OLIGOTRÓFICO

Atendiendo a tres de los parámetros seleccionados, el fósforo total (PT), la concentración de clorofila a y la densidad algal, clasifican al embalse como mesotrófico. Mientras que la transparencia (DS) otorga al embalse un estado de ultraoligotrofia. Combinando todos los indicadores el estado trófico final para el embalse de LECHAGO ha resultado ser **OLIGOTRÓFICO**.

6. DIAGNÓSTICO DEL POTENCIAL ECOLÓGICO

a) Aproximación experimental (PEexp)

Se han considerado los indicadores especificados en la tabla 8, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado a) de la MEMORIA DEL ESTUDIO.

Tabla 8. Parámetros y rangos para la determinación del potencial ecológico experimental.

Indicador	Elementos	Parámetros	Bueno o	superior	Moderado	Deficiente	Malo	
		Densidad algal (cel/ml)	< 10 ³		10 ³ -10 ⁴	10⁴-10⁵	>10 ⁵	
		Biomasa algal, Clorofila a < 2.5		2,5-8	8,0-25	>25		
		(μg/L)	12,0		2,5-0	0,0-23	723	
		Biovolumen algal (mm³/L)	< 0,5		0,5-2	2-8	>8	
		Phytoplankton Assemblage		> 3	2-3	1-2	<1	
	Fitoplancton	Index (Q)	ĺ	- 3	2-3	1-2		
Biológico		Trophic Index (TI) < 2,79		2,79	2,79-3,52	3,52-4,25	>4,25	
		Phytoplankton Trophic Index	>	> 3.4		1,8-2,6	<1,8	
		(PTI)	7 3,4		2,6-3,4	1,0-2,0	11,0	
		Phytoplankton Reservoir	< 6,6		6,6-9,4	9,4-12,2	>12,2	
		Trophic Index (PRTI)	0,0		0,0-3,4	5,4-12,2	- 12,2	
	Zooplancton	Zooplankton Reservoir	< 6.6		6,6-9,4	9,4-12,2	>12,2	
Trophic Index (ZRTI)		Trophic Index (ZRTI)	0,0		0,0 0,1	0,112,2	12,2	
	INDICADOR B	IOLÓGICO (1)	>3,4		2,6-3,4	1,8 -2,6	< 1,8	
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo	
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7	
Fisicoquímico	Oxigenación	Concentración O ₂ (mg O ₂ /L)	>8	8-6	6-4	4-2	<2	
1 ioicoquiiiiico	Nutrientes	Concentración de PT	0-4 4-10		10-35	35-100	>100	
	14dillellies	(μg P/L)	0-4	4-10	10-33	33-100	7100	
INDICADOR FISICOQUÍMICO (2)		Muy bueno	Bueno	ı	Moderado			
			>4,2	3,4 - 4,2	<3,4			

- (1) La valoración del indicador biológico se obtiene asignando la calificación del elemento de menor puntuación (fitoplancton o zooplancton) o peor calidad, según la metodología *one out, all out*.
- (2) La valoración del indicador fisicoquímico se obtiene asignando la calificación del elemento de menor puntuación o peor calidad, según la metodología *one out, all out*.

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico experimental final sigue el esquema de decisiones indicado en la tabla 9:

Tabla 9. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 10 se incluye el potencial indicado por cada uno de los parámetros e indicadores, así como la catalogación de la masa de agua según el potencial ecológico final.

Tabla 10. Diagnóstico del potencial ecológico del embalse de Lechago.

Indicador	Elementos	Parámetros	Valor	Potencial		
		Densidad algal (cel/ml)	1535	Moderado		
		Clorofila a (µg/L)	3,24	Moderado		
		Biovolumen algal (mm³/L)	0,46	Bueno o superior		
D: 1/ :	Fitoplancton	Phytoplankton Assemblage Index (Q)	2,24	Moderado		
Biológico		Phytoplankton Trophic Index (PTI)	3,00	Moderado		
		Trophic Index (TI)	2,44	Bueno o superior		
		Phytoplankton Reservoir Trophic Index (PRTI)	7,95	Moderado		
	Zooplancton	Zooplankton Reservoir Trophic Index (ZRTI)	7,11	Moderado		
	INDICADOR BIOLÓGICO			MODERADO		
	Transparencia	Disco de Secchi (m)	7,35	Muy bueno		
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	0,68	Malo		
	Nutrientes Concentración de PT (µg P/L)			Moderado		
	INDICADOR FISICOQUÍMICO					
	POTENCIAL ECOLÓGICO			MODERADO		

b) Aproximación normativa (*PEnorm*)

Se han considerado los indicadores, los valores de referencia y los límites de clase B⁺/M (Bueno o superior/Moderado), M/D (Moderado/Deficiente) y D/M (Deficiente/Malo), así como sus ratios de calidad ecológica (RCE), especificados en las tablas 11 y 12, estableciéndose el potencial ecológico del embalse según la metodología descrita en la sección 6.3, apartado b) de la MEMORIA DEL ESTUDIO.

Tabla 9. Valores de referencia propios del tipo (VR_t) y límites de cambio de clase de potencial ecológico de los indicadores de los elementos de calidad de embalses (RD 817/2015).

The Floor		5 , ,		\/D	B⁺/M	M/D	D/M
Tipo	Elemento	Parámetro	Indicador	VR _t	(RCE)	(RCE)	(RCE)
Tipo 1 Fitoplar		Diamaga	Clorofila a mg/m ³	2,00	0,211	0,14	0,07
	Fitanlanatan	Biomasa	Biovolumen mm ³ /L	0,36	0,189	0,126	0,063
тіро і	Fitoplancton	Composición	Índice de Catalán (IGA)	0,10	0,974	0,649	0,325
		Composicion	Porcentaje de cianobacterias	0,00	0,908	0,607	0,303
		Diamaga	Clorofila a mg/m³	2,60	0,433	0,287	0,143
T: 7	Fit and an atom	Biomasa	Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 7	Fitoplancton	Caman aninién	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
		Composición	Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
	Fit and an atom		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 9	Fitoplancton	Composición	Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tine 10	Fitoplancton		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 10			Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa itoplancton Composición	Clorofila a mg/m ³	2,60	0,433	0,287	0,143
Tin - 44	Eitaulau atau		Biovolumen mm ³ /L	0,76	0,362	0,24	0,12
Tipo 11	Fitopiancton		Índice de Catalán (IGA)	0,61	0,982	0,655	0,327
			Porcentaje de cianobacterias	0,00	0,715	0,48	0,24
		Biomasa toplancton	Clorofila a mg/m ³	2,40	0,195	0,13	0,065
Ti 40	Fit and an atom		Biovolumen mm ³ /L	0,63	0,175	0,117	0,058
Tipo 12 F	Fitopiancton		Índice de Catalán (IGA)	1,50	0,929	0,619	0,31
			Porcentaje de cianobacterias	0,10	0,686	0,457	0,229
		Diameter	Clorofila a mg/m ³	2,10	0,304	0,203	0,101
Tine 40	Citople::t-:-	Biomasa	Biovolumen mm ³ /L	0,43	0,261	0,174	0,087
Tipo 13	Fitoplancton	Composición	Índice de Catalán (IGA)	1,10	0,979	0,653	0,326
			Porcentaje de cianobacterias	0,00	0,931	0,621	0,31

Tabla 12. Parámetros, rangos del RECT y valores para la determinación del potencial ecológico normativo.

			RANGOS DEL RCE						
Indicador	Elementos	Parámetros	Bueno o superior		Moderado	Deficiente	Malo		
		Clorofila a (µg/L)	≥ 0,433		0,432 - 0,287	0,286 - 0,143	< 0,143		
B: 1/ :		Biovolumen algal (mm³/L)	≥ 0,362		≥ 0,362		0,361 – 0,24	0,23 - 0,12	< 0,12
Biológico	Fitoplancton	Índice de Catalán (IGA)	≥ 0,	≥ 0,982		0,654 - 0,327	< 0,327		
		Porcentaje de cianobacterias	≥ 0,	715 0,714 – 0,48		0,47 – 0,24	< 0,24		
	Bueno o	superior	Moderado	Deficiente	Malo				
INDICADOR BIOLÓGICO			> 0,6		0,4-0,6 0,2-0,4		< 0,2		
			RANGOS DE VALORES						
Indicador	Elementos	Parámetros	Muy bueno	Bueno	Moderado	Deficiente	Malo		
	Transparencia	Disco de Secchi (m)	>6	3-6	1, 5 -3	0, 7 -1,5	<0, 7		
Fisicoquímico	Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	>8	8-6	6-4	4-2	<2		
	Nutrientes	Concentración de PT (µg P/L)	0-4	4-10	10-35	35-100	>100		
				Bueno	Moderado				
INDI	INDICADOR FISICOQUÍMICO			3,4-4,2	<3,4				

La combinación de los dos indicadores, fisicoquímico y biológico, para la obtención del potencial ecológico normativo final sigue el esquema de decisiones indicado en la tabla 13:

Tabla 13. Combinación de los indicadores.

Indicador Biológico	Indicador Fisicoquímico	Potencial Ecológico Experimental		
Bueno o superior	Muy bueno	Bueno o superior		
Bueno o superior	Bueno	Bueno o superior		
Bueno o superior	Moderado	Moderado		
Moderado	Indistinto	Moderado		
Deficiente	Indistinto	Deficiente		
Malo	Indistinto	Malo		

En la tabla 14 se incluye el potencial indicado por cada uno de los parámetros, así como la catalogación de la masa de agua según el potencial ecológico final (*PEnorm*) tras pasar el filtro del indicador fisicoquímico.

Tabla 14. Diagnóstico del potencial ecológico (PEnorm) del embalse de Lechago.

Indicador	cador Elementos Parámetro Indicador		Valor	RCE	RCET	PEnorm		
			Clorofila a (µg/L)	3,24	0,80	0,86	Bueno o superior	
		Biomasa	Biovolumen algal (mm³/L)	0,46	1,65	1,40	Bueno o superior	
B			Media			1,13		
Biológico	Fitoplancton		Índice de Catalán (IGA)	27,43	0,933	0,57	Deficiente	
		Composición	Porcentaje de cianobacterias	0,00	1,00	1,00	Bueno o superior	
			Media			0,78		
Media global						0,96		
	INDICADOR BIOLÓGICO				0,96		BUENO o SUPERIOR	
Indica	ndor	Elementos	Indicador	Valor			PEnorm	
		Transparencia	Disco de Secchi (m)	7,35			Muy bueno	
Fisicoquímico Oxigenaci		Oxigenación	O ₂ hipolimnética (mg O ₂ /L)	0,68			Malo	
Nutrientes Concentración de PT (µg P/L)					23,64		Moderado	
	INDICADOR FISICOQUÍMICO				1		MODERADO	
POTENCIAL ECOLÓGICO PEnorm					МО	DERADO)	

ANEXO I. REPORTAJE FOTOGRÁFICO

Figura 6. Vista de la presa del embalse

Figura 7. Vista del punto de acceso